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Abstract
Several integrability tests for discrete equations will be reviewed. All tests
considered can be applied directly to a given discrete equation and do not
rely on the a priori knowledge of the existence of related structures such as
Lax pairs. Specifically, singularity confinement, algebraic entropy, Nevanlinna
theory, Diophantine integrability and discrete systems over finite fields will be
described.

PACS numbers: 02.30.Ik, 02.30.Ks

1. Introduction

We describe in this paper various ‘integrability detectors’ for discrete systems. Here, discrete
means discrete time: the evolution is governed by recurrence relations, or, by discretizing
space as well, partial difference equations.

The notion of integrability for continuous systems having a finite number of degrees
of freedom goes back to the 19th century with J Liouville, and the existence of conserved
quantities (in involution) is its basic feature, since it is the ground for the existence of action-
angle variables, and the full resolution of the equations of motion.

Remarkably enough, the pioneering work of S Kowalevskaya and its continuation by
P Painlevé, by an analysis of structural properties, already provided before the end of the 19th
century an integrability detector, that is to say a means to detect integrability, without having
to produce an explicit solution.

Discrete counterparts of essentially all the known properties of continuous integrable
systems are now available, but the most recent results have also shown that discrete systems
are in a sense more fundamental than the continuous ones. They have a richer structure,
and they have become the center of a flourishing activity. We will present here a cluster of
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properties which signal the integrability of discrete systems. They are interrelated, even if
not equivalent, and they all allow a direct study of the systems. There are other approaches
to discrete integrability in the literature, such as the method of perturbation of the continuum
limit [1]. Here we consider equations that do not necessarily possess any continuum limit.

The paper is divided into three parts, each having a different flavour, and reflecting
different points of view, but describing the features of what is—by a common consensus—an
integrable discrete system. The main concepts discussed are singularity analysis (section 2),
growth and complexity (section 3), and analytic and arithmetic approaches (section 4).

2. Singularity confinement

Singularity confinement [2] was the name given to a property of discrete systems integrable
by spectral methods, namely that any spontaneously appearing singularity disappears after a
few iteration steps. In what follows we will present the workings of singularity confinement
as a discrete integrability detector, some of its applications as well as the associated pitfalls.

2.1. The appearance of singularity confinement

The first occurrence of confined singularities was not in studies of integrable systems but rather
in the domain of numerical analysis. Indeed, more than 50 years ago, Wynn [3] proposed what
he called the ε-algorithm which was meant as an accelerator of the convergence of series. It
has the form

εk+1
n = εk−1

n+1 +
1

εk
n+1 − εk

n

(2.1)

where ε−1
n = 0 and ε0

n = Sn, i.e. the series the convergence of which must be accelerated. The
numbers εk

n fill a two-dimensional array where the ε’s with an odd upper index are auxiliary
quantities. One can easily eliminate them leading to Wynn’s cross rule:

1

εk+2
n − εk

n

− 1

εk
n − εk−2

n

− 1

εk
n+2 − εk

n

+
1

εk
n − εk

n−2

= 0. (2.2)

When implementing the convergence algorithm, in the form (2.1) or (2.2) a division by zero
may occur. However, it turns out that one may jump over the singularity by using what in
numerical analysis are called singular rules and continue the computation. Let us illustrate
this by using the cross rule. Solving for εk+2

n we find

εk+2
n = εk

n −
(
εk
n − εk−2

n

)(
εk
n+2 − εk

n

)(
εk
n − εk

n−2

)
(
εk
n − εk−2

n

)2 − (
εk−2
n − εk

n+2

)(
εk−2
n − εk

n−2

) . (2.3)

Clearly the vanishing of any of the denominators of the three last terms of (2.2) leads simply
to εk+2

n = εk
n . Thus, the singularity does not lead the algorithm to a halt. (On the other

hand, from a purely numerical point of view, a division by a number close to zero makes the
algorithm unstable due to cancellation errors and particular rules must be introduced. Since
this is beyond our scope we will refer the interested reader to the existing literature.)

The notion of confinement made its appearance, in relation with integrability, in the
work of Joshi. Indeed, in [4], Joshi observed that integrable systems possess what she called
orbits with pole-like behaviour. She started by studying possible discretizations of the Riccati
equation z′ = αz2 focusing on two of them, the logistic mapping zn+1 = azn(1 − zn) and
the homographic one zn+1 = azn(1 − zn+1). For the first mapping it is known that it exhibits
chaotic behaviour for a whole range of values of the parameter a. (This is true despite the fact
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that for some special values of a one can find exact solutions of the mapping. For instance,
when a = 2 we have zn = 1

2

(
1 − (1 − 2z0)

2n)
. However, no contradiction exists. While

the solution can be given explicitly in terms of n and the initial point z0, an inversion of the
formula of the solution shows that the initial point z0 is a multivalued function of the iterates
and thus cannot play the role of a conserved quantity. A detailed discussion of solvability
and its relation to integrability detectors can be found in the work of some of the present
authors [5].) On the other hand the homographic mapping is linearizable: putting zn = 1/ζn

transforms it to a non-homogeneous linear equation ζn+1 = 1 + ζn/a, an equation devoid of
any chaotic behaviour. The homographic mapping possesses a family of orbits which reach
infinity in a finite number m of steps starting from a finite z0. For instance when a = 1 it
suffices to take z0 = −1/m whereupon we find that zm diverges but zm+1 is finite (in fact equal
to 1). Joshi remarks that these orbits are the discrete analogues of the solutions of the Riccati
equation which possess movable poles.

The introduction of the notion of singularity confinement [2] and its definitive link with
integrability came from the study of the KdV equation:

xi+1
j = xi−1

j+1 +
1

xi
j

− 1

xi
j+1

. (2.4)

Given the form of (2.4) the question which arises naturally is ‘what if a singularity appears
spontaneously?’ How does it evolve under the mapping (2.4)? The result turned out to be the
following: a vanishing x at (i, j) leads to divergent x’s at both (i + 1, j − 1) and (i + 1, j)

and a vanishing x at (i + 2, j − 1). Then at both sites (i + 3, j − 2) and (i + 3, j − 1) a
fine cancellation occurs and one obtains finite values: xi+3

j−1 = xi−1
j + 1/xi

j−1 − 1/xi+2
j and a

similar one for xi+3
j−2. Thus, the singularity does not propagate beyond a few lattice points and

is confined to a small region. More complicated singularities may exist (x vanishing on more
than one point) but it can be shown that they, too, lead to confined singularities.

Moreover, the notion of singularity confinement is not limited to lattice systems but exists
(and is easier to grasp) also for one-dimensional mappings. The McMillan mapping

xn+1 + xn−1 = 2μxn

1 − x2
n

(2.5)

was the acid-test of the method. This mapping is well known for its integrability. In fact,
it can be completely integrated in terms of elliptic functions: x = x0cn(�n, κ), where
κ = x0dn(�)/sn(�) and � is related to μ through μ = cn(�)/dn2(�). A singularity may
appear in the recursion (2.5) whenever x passes through the value 1. So let us assume that
x0 is finite and that x1 = 1 + ε. (This can be obtained from a perfectly regular x−1.) We
find then the following values: x2 = −μ/ε − (x0 + μ/2) + O(ε), x3 = −1 + ε + O(ε2) and
x4 = x0 + O(ε). Thus, not only the singularity is confined at this step but also the mapping
has recovered the memory of the initial conditions through x0.

Through a bold step, starting from the remark that for a host of systems, integrable through
spectral methods, the spontaneously appearing singularities were confined, the singularity
confinement property was elevated to the rank of a discrete integrability criterion.

2.2. Applications of singularity confinement

The most fruitful application of singularity confinement and moreover one that, as we see in
what follows, avoids all pitfalls is the deautonomization of integrable autonomous mappings.
The interest of this approach is that it made possible the derivation of the discrete analogues
of Painlevé equations [6]. An illustration is in order at this point.
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We start by generalizing the McMillan mapping (2.5) to the non-autonomous case

xn+1 + xn−1 = a + bxn

1 − x2
n

(2.6)

where a and b are now functions of the independent variable n. The integrable non-autonomous
form of (2.6) will be derived using the singularity confinement property. We assume that for
some n we have a regular xn and xn+1 = σ + ε where σ = ±1. (In this way we cover the two
possibilities of x going through a root of the denominator of the rhs.) Iterating further we find
that

xn+2 = −bn+1 + σan+1

2ε
+

an+1 − σbn+1

4
− xn + O(ε) (2.7)

xn+3 = −σ +
2bn+2 − bn+1 − σan+1

bn+1 + σan+1
ε + O(ε2). (2.8)

The condition for xn+4 to be finite reads

bn+1 − 2bn+2 + bn+3 + σ(an+1 − an+3) = 0 (2.9)

which leads to an+1 = an+3 and bn+1 − 2bn+2 + bn+3 = 0. Thus, we have bn(≡zn) = αn + β

and an = δ + γ (−1)n. Ignoring the even–odd dependence we take a as a strict constant. We
obtain finally

xn+1 + xn−1 = a + znxn

1 − x2
n

. (2.10)

This is a form of discrete Painlevé II in agreement with previous results derived through
different approaches. (When the even–odd dependence is not neglected, (2.10) is a discrete
analogue of Painlevé III, as shown in [7].)

Another interesting example may be presented at this point. We start from the integrable
mapping

xn+1xn−1 = a

xn

+
1

x2
n

(2.11)

and deautonomize it by assuming that a is a function of n. We assume that for some n, xn is
regular and xn+1 = −1/a(n) + ε. Iterating and taking ε → 0 we find for xn+2, xn+3, xn+4 the
values 0, ∞ and 0, respectively. This is the singularity pattern of this mapping (which, by
the way, is exactly the same in the autonomous case). Computing xn+5 when ε is taken as 0, we
find a finite value, −a(n+1)/a(n+3)2. However, xn+6 is not finite at this limit and unless some
constraint is set on a the singularity propagates indefinitely. On the other hand if we take a
such that a(n+ 2)a(n−2) = a(n)2 then xn+6 and the subsequent x’s are finite. The integration
of the constraint on a leads to an = ae,oλ

n, where ae,o indicates an even–odd dependence.
However, and contrary to the discrete Painlevé II case, this dependence is spurious since it can
be eliminated through a rescaling of the dependent variable. Thus, we have simply an = a0λ

n.
This result is particularly interesting since it leads to a discrete Painlevé of q type.

Singularity confinement’s usefulness was not limited to the derivation of discrete Painlevé
equations. Many other systems can be treated successfully within this approach. Consider for
example the system

xn+1 = xn + a +
b

xn

+
c

xn−1
(2.12)

where a, b and c are functions of n. The singularity analysis of this system is straightforward.
A singularity may appear whenever x goes through zero. Thus, starting from a finite xn−1 we
take xn = ε and iterate further. We find that all subsequent x’s diverge when ε → 0. However,
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if at the level of xn+2 we choose c(n + 1) = −b(n), then xn+2 and all the subsequent x’s are
finite when ε → 0. Thus, we expect the mapping to be integrable, and indeed it is. Putting
a(n) = d(n) − d(n − 1) we can write (2.12) as an exact difference. Absorbing the integration
constant into d we have

xn+1 = d +
b

xn

. (2.13)

Thus, (2.12) is the discrete derivative of the homographic mapping. We remark that in this
case the singularity analysis does not define completely the functions appearing in (2.12)
which remain free up to one constraint between b and c. This existence of free functions is
characteristic of mappings the integration of which is obtained through linearization [8].

2.3. Refining the notion of singularity

The continuous Painlevé transcendents can be viewed as deautonomizations of the elliptic
functions. By analogy a systematic derivation of the discrete Painlevé equations may proceed
through the deautonomization of the QRT [9] mapping. The latter is an integrable family of
mappings, the solution of which is expressed in terms of elliptic functions. The ‘symmetric’
form of the QRT mapping is as follows:

xn+1 = f1(xn) − xn−1f2(xn)

f2(xn) − xn−1f3(xn)
(2.14)

where fi are specific quartic polynomial, involving in all five free parameters. The derivation
of the discrete Painlevé equations proceeds through the deautonomization of these parameters.
However, the application of the singularity confinement approach in this case necessitates
a more precise definition of what we mean by ‘singularity’. Clearly an infinite value for
xi, i = n, n ± 1, does not play any particular role. In fact, relation (2.14) is ‘bi-homographic’
and thus infinity can be taken to any finite value by a simple homographic transformation
of variables. However, (2.14) may pose a subtler problem, it may turn out that for a certain
n the mapping (apparently) loses one degree of freedom. This occurs when xn+1 is defined
independently of xn−1 and this happens whenever f1(xn)f3(xn) − f2(xn)

2 = 0. Thus, we
consider that a singularity appears whenever xn+1 is independent of xn−1, the singularity being
associated with the loss of a degree of freedom. It is then natural to ask how this singularity
can be confined, i.e. how the mapping can recover the lost degree of freedom. For rational
mappings of the kind we are considering, this can be realized if some of the mapping’s variables
are assumed to be of indeterminate form, for instance 0/0. In that case new free parameters
can be introduced and the mapping recovers its full dimensionality.

The situation we just described is perhaps better illustrated in the case of linearizable
mappings of the form

xn+1 = f1(xn) − xn−1f2(xn)

f4(xn) − xn−1f3(xn)
(2.15)

where fi are linear in xn: fi = aixn + bi . Here the mapping loses one degree of freedom
whenever

f1(xn)f3(xn) − f2(xn)f4(xn) = 0. (2.16)

Once xn is obtained from (2.16) one can compute xn+1 simply as xn+1 = f1(xn)/f4(xn) =
f2(xn)/f3(xn), unless xn−1 was such that both the numerator and the denominator of the
fraction defining xn+1 vanished, that is

xn−1 = f1(xn)/f2(xn) = f4(xn)/f3(xn). (2.17)

5
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Thus, one sees two ways in which the singularity confinement can be preserved: either relation
(2.17) is satisfied or it is not, in which case xn+1 is determined and is independent of xn−1. In the
latter case one degree of freedom will be definitely lost, as xn+2 will be determined in terms of
xn only, unless both the numerator and the denominator of the fraction that define it vanish, that
is xn = f1(xn+1)/f2(xn+1) = f4(xn+1)/f3(xn+1). In the case where (2.15) is satisfied, on the
other hand, it would appear that a degree of freedom suddenly appears at step n + 1. The only
way out is to demand that xn was determined by xn−1 only, independent of xn−2, which means
that one already had at the previous step: xn = f1(xn−1)/f4(xn−1) = f2(xn−1)/f3(xn−1).

The ideas presented above can be easily generalized to an N-component rational mapping:

x′i = fi(x1, x2, . . . , xN) i = 1, 2, . . . , N. (2.18)

Normally for such an N-component mapping, N free parameters, introduced by the initial
conditions, must be present at every step. Now, it may happen that at some iteration one
(or more) degrees of freedom are lost. The condition for this to occur is that the Jacobian
of (x ′

1, x
′
2, . . . , x

′
N) with respect to (x1, x2, . . . , xN) vanishes. This signals the appearance of

a singularity which can only be confined if at some subsequent step an indeterminate form
appears allowing the lost parameter to be re-introduced.

Some remarks are in order before concluding this section. The whole idea of confinement
is that a singularity appearing spontaneously, due to the choice of initial conditions, must
disappear after a few iteration steps. A nonconfined singularity is one which appears at some
iteration and does not disappear for all subsequent ones. However, there may exist situations
where a singularity exists for all iterations. We consider that such a singularity is the analogue
of what we call a fixed singularity in the continuous case. The existence of singularities of
this type are not a counterindication for integrability. The situation may become even more
complicated if at some iteration, in the middle of such a ‘fixed’ singularity, the singularity
disappears only to reappear after a few iteration steps. We call this situation anti-confinement
and we consider that again it should not hinder integrability. Thus, an unconfined singularity is
one extending only either to plus or to minus infinity in the iteration index. All other situations
are considered as situations of confinement (including the case of anticonfinement and that of
a fixed singularity).

2.4. Singularity confinement as the discrete Painlevé property

If one wonders what the discrete analogue of the Painlevé property is, singularity confinement
appears to be an excellent candidate. Both are based on the local study of singularities: the
special structure these singularities possess when the system is integrable. In the continuous
case the Painlevé property is based on the requirement that the solutions of a given equation be
devoid of multivaluedness-inducing singularities (and thus one can, in the sense of Poincaré,
integrate the equation). In the discrete case the singularity confinement property is based
on the requirement that the singularities not lead to interderminate points, i.e. points where
the iterates of the mapping are not well defined. Thus, in Kruskal’s sense, the mapping
has a meaning as a dynamical system. Obviously, an integrability detector is related to a
specific type of integrability, of which there exist several kinds, the term integrability being
conveniently rather vague. The Painlevé property is characteristic of systems the integration
of which proceeds through spectral methods. The same holds true for singularity confinement
in the discrete setting. Thus, on the basis of these analogies it is quite reasonable to posit that
singularity confinement is the discrete analogue of the Painlevé property. (We should make
clear here that this is not a rigorous statement and, in the light of what follows, one that should
be assorted to a caveat.)
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While for continuous systems the Painlevé property is almost tautologically identified to
integrability, the situation is not as favourable for singularity confinement. Already in her work
on orbits with pole-like behaviour [4] Joshi remarked that there existed systems which, while
apparently nonintegrable do possess such orbits. The example she presented is the mapping
zn+1 = z2

n

/(
z2
n − a2

)
with a �= 1, which possesses orbits with pole-like behaviour, namely

those including the sequence: ±a,∞, 1, . . . . This particular example may be dismissed on
the basis of the observation that the mapping is not well defined in both evolution directions.
If one tries to evolve towards diminishing n’s the preimages of the initial point proliferate, i.e.
their number grows exponentially. As was commented in [10] (and in a more general setting,
related to correspondences, in [11]) this is a feature deemed incompatible with integrability.
Still the problem persists. There exist well-defined mappings which do possess the singularity
confinement property but are not integrable [12]. We will illustrate this point with the mapping
studied in [13]:

xn+1

xn−1
= xn − 1

xn

. (2.19)

Its singularity structure can be easily obtained. We find two singularity patterns
{±1, 0,∞,∓1} and the singularity is confined. The nonintegrable character of this mapping
was studied in [13] where it was shown that there exists a deep link between its dynamics
and that of the Fibonacci recurrence. This is not the only example of nonintegrable confining
mapping. Whole families of such mappings do exist. Thus, it appears that the analogy of
singularity confinement with the Painlevé property breaks down at this point. Singularity
confinement is not sufficient for integrability. We will not go into detailed explanations here.
It suffices to say that for discrete systems to be integrable, a proper local singularity structure
is not enough. The growth properties of the solutions at infinity enter into play. The best way
to qualify this, as will be explained later in this paper, is through the Nevanlinna approach
[14]. To put it in a nutshell, for a discrete system to be integrable the requirement is that
the Nevanlinna order of the solution be finite (which guarantees not too fast a growth) and
moreover that its singularities be confined. A practical way to study the growth properties of
the solution of a given mapping is through the algebraic entropy method [15, 16], as will be
explained later in this paper.

The parallel between singularity confinement and the Painlevé property is deeper than
what hinted at till now: both turn out not to be necessary for a specific kind of integrability,
namely linearizability. Indeed, there exist equations which are integrable through linearization
and which do not possess the Painlevé property [17]. This is true both in the continuous and
the discrete case. We will illustrate this through two examples. We start from the linear
equation

tx ′′ + (at − 1/2)x ′ + btx

x ′′ + ax ′ + bx
= K (2.20)

and take its derivative so as to eliminate K, obtaining a third-order equation. Next we show
that the same third-order equation can be obtained if we start from the nonlinear equation

x ′′x ′ + 2ax ′2 + 3bx ′x + (2ab − b′)x2 = M (2.21)

and take its derivative so as to eliminate M. Here a and b are not free. We have b = a2 − a′/2
and a satisfying the equation a′′′ = 6a′′a + 7a′2 − 16a′2a2 + 4a4 which is equation XII in the
Chazy classification. So, equation (2.21) is integrable by linearization through equation (2.20).
It is straightforward to show that (2.21) violates the Painlevé property. Solving it for x ′′, we
find terms proportional to x2/x ′ (and 1/x ′) which were shown to be incompatible with the
Painlevé property. A caveat is in order at this point. While there exist large classes of

7
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linearizable equations without the Painlevé property, there does also exist a large class of
linearizable equations which do satisfy the Painlevé criterion. The best known example of
equations belonging to this class are the Riccati equation and its higher order analogues.

Next we turn to a discrete example. We examine the mapping [13]

xn+1 = xn

( xn

xn−1
+ an

)
. (2.22)

When xn passes through the value zero (which may well happen for some nonzero initial
conditions) it is clear from the form of the mapping that all the subsequent values of x will
be zero and the memory of the initial conditions is forever lost. Thus, this singularity is
nonconfined. On the other hand, (2.22) is linearizable in a straightforward way since it can be
written as follows:

yn = yn−1 + an (2.23)

xn+1 = xnyn (2.24)

where one has to solve two linear equations in cascade. Of course the remark concerning
the existence of linearizable systems with the Painlevé property has its analogue here for
linearizable mappings with confined singularities: all mappings of the ‘projective’ family fall
into this class.

A natural question here is what is the usefulness of non-sufficient integrability criterion.
First, it is clear that if the slow growth at infinity of the solutions is guaranteed, as is the
case for some integrable autonomous mappings, the singularity confinement criterion is
quite adequate for its deautonomization. Moreover, it does present some advantage over
the algebraic entropy approach since one does study one singularity at a time (which leads
to more manageable calculations) and not their combined effect, as in the algebraic entropy
applications. Linearizable discrete systems are a class of their own, but this is also true in
the continuous case. When dealing with a linearizable system the singularity confinement
approach may lead to a unnecessarily constrained system (or, as in the case of (2.22), perhaps
miss it altogether). We can illustrate this point through a specific example. We start with the
mapping [18]

1

xn + xn+1
+

1

xn + xn−1
= k

xn

. (2.25)

A singularity appears whenever the value of x becomes 0. Let us assume that for some n we
have a regular xn−2 and xn−1 = 0. Iterating the mapping we find that all subsequent x’s are
zero unless some constraint holds. The interesting result is that the singularity can be confined
at any step. Thus, if we require that the confinement is attained at the level of xn+m we find
that k must be of the form k = m/(m + 1). All these mappings are integrable, but not just
them. As a matter of fact (2.25) is integrable, through linearization, for k being an arbitrary
function of n.

While linearizability does not require confined singularities the solutions must still have
finite Nevanlinna order. In fact, as will be explained later in this paper, the detailed study
of the growth properties of the solutions of some rational mapping does furnish indications
as to its linearizability. On the other hand, for continuous systems no general linearizability
criterion is known to date.

2.5. Further applications of singularity confinement

While singularity confinement was discovered in a purely discrete context its extension to
differential-difference systems [19] does not pose fundamental problems. The discrete part
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of the system is considered as a recursion allowing one to compute a given term from the
knowledge of the preceding ones. The idea is to look for the possible singularities and their
propagation under this recursion. We will illustrate such an application with the classical
example of the Toda system. We start from

ẍn = exn+1−xn − exn−xn−1 (2.26)

and transform it into a purely algebraic form through the transformation: an = exn+1−xn , bn =
ẋn, leading to

ȧn = an(bn+1 − bn) (2.27)

ḃn = an − an−1. (2.28)

We look for the spontaneous appearance of a singularity for some n (where the particle number
is interpreted as the number of steps in the recursion). This means that we do not study the
solutions that are allowed to be singular for every n but only those that become singular at
some n. In this context relation (2.27)–(2.28) is to be interpreted as a recursion:

an = an−1 + ḃn (2.29)

bn+1 = bn +
ȧn

an

. (2.30)

We start by assuming that both bn and an are non-divergent and that the singularity appears
in step n + 1. In fact, due to the presence of the logarithmic derivative in (2.30), a pole
may appear in bn+1 if an vanishes at some time t0. Let us start with the simplest case of
a single zero i.e. an = ατ where τ = t − t0 and α = α(t) with α(t0) �= 0. Substituting
in (2.30) we find bn+1 = 1/τ + · · · , an+1 = −1/τ 2 + · · ·. Iterating further we obtain
bn+2 = −1/τ + · · · , an+2 = Aτ + · · · where A is a quantity depending on α and bn. Iterating
further we obtain a finite result for bn+3. Thus, the singularity that appeared at bn+1 due to the
simple root in an is confined after two steps. The vanishing-an behaviour just examined and
which induces the divergence of bn+1 is not the only one. One can imagine higher order zeros
of the type an = ατk . Depending on the value of k, more and more intermediate steps will be
necessary for the confinement of the singularity: in principle, the confinement of singularity
an ∝ τ k would necessitate k + 1 steps. However, the simplest singular behaviour is also the
most generic one and, for systems comprising parameters to be determined, its study yields
the most important integrability constraints for the system.

The analysis just presented should be interpreted as follows. First, the singularities that
appear do have the Painlevé property (absence of branching). Second, they do not propagate
ad infinitum under the recursion (2.29)–(2.30) but are confined to a few iteration steps. The
first is the usual, Painlevé property and the second is the singularity confinement. Both are thus
required for the integrability of differential-difference systems. Extention of such ‘hybrid’
methods to other systems like, differential-delay or integrodifferential ones have also been
explored. We are not going to discuss them but proceed to a different application of the notion
of singularity confinement (although, as we will explain, the term ‘singularity’ is not quite
appropriate in that context).

In [20], Joshi and Lafortune have transposed the notion of confinement to the ultradiscrete
case and proposed an analogue to the singularity confinement property. In the ultradiscrete
systems the nonlinearity is mediated by terms involving the max operator. Typically one is in
the presence of terms like max(Xn, 0). When, depending on the initial conditions, the value
of Xn crosses zero, the result of the max(Xn, 0) operation becomes non-analytic: when X is
slightly smaller than 0 the result is zero, while for X > 0 the result is X, and the derivative
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at 0 does not exist. It is this non-analyticity that plays the role of the singularity. Typically
if we put X = ε, a term μ = max(ε, 0) propagates with the iterations of the mapping and
perpetuates the non-analyticity unless by some coincidence it disappears. This disappearance
is the equivalent of the singularity confinement for ultradiscrete systems. In order to give an
illustrative example based on the ultradiscrete Painlevé I equation

Xn+1 + Xn−1 = A + max(0, Xn) − 2Xn (2.31)

we will examine the behaviour of a singularity appearing at, say, n = 1 where X1 = ε,
while X0 is regular and look at the propagation of this singularity both forwards and
backwards. The presence of μ ≡ max(ε, 0) indicates that the value of X is ‘singular’.
Below we present only the results corresponding to A > 0, those corresponding to
A < 0 leading to similar conclusions. First we examine the case X0 > A. We find
. . . , X−3 = A − ε,X−2 = X0 − A + 2ε,X−1 = −X0 + A − ε,X0 = X0, X1 = ε,X2 =
A−X0 −2ε+μ,X3 = 2X0 −A+3ε−2μ,X4 = A−X0 −ε+μ,X5 = −ε,X6 = X0 +2ε, . . ..
Here the solution is regular until X1 then singular, confined, between X2 and X4 and regular
from X5 on. Next we consider X0 < 0 and |X0| < A and obtain the following sequence:
. . . , X−13 = X−7 − 2X−5, X−12 = X−6 − 2X−5, X−11 = X−5, X−10 = X−7 − X−5,

X−9 = X−6−X−5, X−8 = X−5, X−7 = A+ε,X−6 = −X0−2ε+μ,X−5 = X0+ε−μ,X−4 =
A − X0 − ε + μ,X−3 = −ε,X−2 = X0 + ε,X−1 = A − 2X0 − ε,X0, X1 = ε,X2 =
A − X0 − 2ε + μ,X3 = X0 + ε − μ,X4 = −X0 + μ,X5 = A − ε,X6 = X3, X7 =
X4 − X3, X8 = X5 + X3, X9 = X3, X10 = X4 − 2X3, X11 = X5 + 2X3, . . .. One can see
a regular zone between X−3 and X1 and a singular pattern from X2 on as well as until X−4,
as can be seen from the persistence of the singular valued X−5 and X3. This is an anti-
confined case, in the sense that a (small) regular region exists surrounded by singular values
extending all the way to infinity in both directions. As we explained already we consider
such a behaviour compatible with integrability. The cases 0 < X0 < A and X0 < −A lead
to similar, anti-confined, patterns. Thus, in all cases we have either a confined singularity (a
central singular zone with regular behaviour outside) or an anti-confined singularity (a central
regular zone with singular behaviour outside). Both behaviours are deemed compatible with
integrability. The two points which we consider important in this analysis are that (a) one must
study all possible sectors of initial conditions and/or parameters and (b) one must consider
the possibility of anti-confined solutions.

In perfect analogy to the discrete case there exist nonintegrable systems with confined
singularities and integrable systems with unconfined singularities [21]. In section (2.4) we
presented an example of a nonintegable mapping which did pass the confinement test. Up to
a minor change of sign, which does not modify the singularity structure, we can rewrite it as

xn+1 = xn−1

(
xn +

1

xn

)
. (2.32)

Its ultradiscretization is straightforward. We find

Xn+1 = Xn−1 + |Xn| (2.33)

using the absolute value of X instead of its equivalent max(X, 0) + max(−X, 0). We
will examine the behaviour of a singularity appearing at, say, n = 1 where X1 = ε,
while X0 is regular. We distinguish two different sectors X0 < 0 and X0 > 0. In
the first case (X0 < 0) we find the following sequence: . . . , X−3 = 3X0, X−2 = 2X0 − ε,

X−1 = X0 + ε,X0, X1 = ε,X2 = X0−ε+2μ,X3 = −X0 + 2ε−2μ,X4 = ε,X5 = −X0 + ε, . . ..
We can see readily that the singularity, indicated by the presence of μ, is confined
(to X2 and X3 only). Turning to the case X0 > 0 we find the following sequence:
. . . , X−4 = − X0 + 2μ + ε,X−3 = −X0 + 2μ,X−2 = ε,X−1 = − X0 + ε,X0, X1 = ε,
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X2 = X0 + 2μ − ε,X3 = − X0 + 2μ,X4 = 2X0 + 4μ − ε, . . .. In this case we have an
anti-confined solution: a regular part around n = 0 is surrounded by unconfined singularities
both for large positive and large negative n’s. Thus, the ultradiscrete mapping (2.33) has
confined singularities despite its nonintegrable character (the latter being inferred in [21] from
the growth properties of its iterates).

The converse situation, of a mapping which while integrable does not possess confined
singularities, does also exist. As expected an example is to be sought among linearizable
systems. In [13] we discovered the ‘multiplicative’ linearizable mapping

xn+1

xn−1
= a

xn + a

xn + 1
. (2.34)

Without loss of generality the mapping can be ultradiscretized to

Xn+1 = Xn−1 + A + max(Xn,A) − max(Xn, 0) (2.35)

with A > 0. The complete description of the solution would require examining several
sectors but in order to show that there exist unconfined singularities it suffices to exhibit
such a situation in one sector. It turns out that the case where X0 has a large negative
value is one leading to unconfined singularities. We find . . . , X−4 = −X0 − 4A,X−3 =
−4A + ε,X−2 = X0 − 2A,X−1 = −2A + ε,X0, X1 = ε,X2 = X0 + 2A − μ,X3 =
2A + ε,X4 = X0 + 3A − μ,X5 = 4A + ε,X6 = X0 + 4A − μ,X7 = 6A + ε, . . .. We remark
readily that while for negative indices the solution is regular, a singularity, mediated by μ,
appears for positive n’s and is never confined.

Clearly a better understanding of ultradiscrete integrability would necessitate some input
from a Nevanlinna-like theory for ultradiscrete systems.

3. Algebraic entropy

3.1. Introduction

Wondering about the integrability of a recurrence relation, or more generally a map, naturally
invites to analyse its iterates. Unfortunately it is usually impossible to calculate explicitly these
iterates by hand or even with any state-of-the-art formal calculus software, simply because the
expressions one should manipulate are rational fractions of increasing degree of the various
initial conditions. The complexity and size of the calculation make it impossible to conduct.

Nevertheless it was seen early enough that ‘integrable’ maps are not as complex as generic
ones. This was done primarily experimentally, by an accumulation of examples, and later
by the elaboration of the concept of algebraic entropy which we will review here (see [15,
22–25]).

The basic idea, given a rational map defined on n-dimensional space, is to examine the
growth of the degree of its iterates, and extract a canonical quantity, which is an index of
complexity of the map. This will be the algebraic entropy (or its avatar the dynamical degree).
We will restrict ourselves to birational maps, that is to say maps of which the inverse is also
rational.

The first step is to properly define the degree we consider; ensure that the entropy is well
defined, and is independent of the coordinate system, so that it is canonical (section 3.2). This
leads us to use the complex projective space as a space of initial conditions. If one is interested
in recurrences, the dimension of the space to consider is just the order of the recurrence.

The next step is to explain what influences the value of the entropy. This makes the link
with the singularity analysis: actually, the singularity structure entirely governs the value of
the entropy (section 3.3).
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Section 3.4 describes how to calculate the algebraic entropy in practice. The first method
is to list sufficiently many terms of the sequence of degrees of the iterates, and guess the full
sequence from its first few terms. This heuristic approach has proved extremely efficient. The
second method is to examine the singularity structure to find the exact value of the entropy.
The latter yields proofs, but cannot always be used.

At this point one can evaluate the interest of the entropy as an integrability detector:
integrable systems have a vanishing entropy, nonintegrable one have a non-vanishing entropy.

Section 3.5.2 describes the natural extension of the notion to non-autonomous maps,
and to the so-called lattice maps, which are to maps what partial difference equations are to
difference equations. There again the vanishing of the entropy can be used as an integrability
detector.

We present conjectures on the value of the entropy, and partial proofs. The main conjecture
is that the algebraic entropy of any map over projective space of any dimension is the logarithm
of an algebraic integer. This puts a limit on the set of values the entropy can assume, and
there is a further conjecture on these values: in a given dimension there is a minimum for this
value. In other words, there exists an entropy gap, i.e. one cannot approach arbitrarily close
to integrability.

3.2. Definition

Suppose we are given a rational evolution map ϕ acting in an n-dimensional space. We first
write it in a canonical way, using projective space, and the (n + 1) homogeneous coordinates
{x0, x1, . . . , xn} for n-dimensional projective space, as a polynomial transformation in the
homogeneous coordinates.

xi −→ φi(x0, x1, . . . , xn) i = 0, . . . , n.

If one factors out any common polynomial factors, the degree is well defined, in a given system
of coordinates, although it is not invariant by changes of coordinates.

Definition 1. Let dk be the degree of the kth iterate of ϕ. Define the entropy5 as

ε = lim
k→∞

1

k
log(dk). (3.1)

Proposition 1. The entropy is always defined and is invariant under changes of coordinates:
it is a birational invariant associated with the transformation. If ε = 0, and the growth
is polynomial, of the form dk 	 αkν , then ν and α are canonically defined (birationally
invariant).

This is a direct consequence of the elementary property that for any pair of birational
maps ϕ and ψ ,

dψ ·ϕ � dψdϕ. (3.2)

To give a flavour of the calculations, let us anticipate on section (3.4), and examine three
simple examples in the two-dimensional plane.

Example 1. The Henon map. It is a map in two dimension given in non-homogeneous
coordinates (u, v), as

u −→ 1 + v − αu2 (3.3)

5 One may also define the dynamical degree as the exponential of the algebraic entropy.
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v −→ βu. (3.4)

Going to homogeneous coordinates [x, y, z] means replacing u by y/x and v by z/x.
This leads to the map

ϕH : [x, y, z] −→ [x2, x2 + xz − αy2, βxy]. (3.5)

One gets as a series of degrees of the iterates, for generic values of the parameters:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ??? (3.6)

Note that the degree of the map (3.5) is 2. The sequence dk is not only bounded by 2k , but
it saturates this bound. The growth of the sequence of degrees is maximized. In fact, the map
being polynomial in non-homogeneous coordinates, there cannot be any drop of the degree,
and the entropy is just log(2).

This is not always the case as the following two examples show.

Example 2. Exponential, but not maximal growth.
Consider the map

ϕ− : [x, y, z] −→ [yz + 2xz − 2xy, yz − xy, yz + xz − 2xy]. (3.7)

We get

1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583, ??? (3.8)

After the third iterate, the bound dk � dk
1 = 2k is not saturated anymore. However, the

growth of the degrees is still exponential, but with rate (1 +
√

5)/2, as we will see later. This
means that when one evaluates the iterates, some common factors appear in the homogeneous
coordinates, and this leads to a drop of the degree. The entropy is non-vanishing but is lower
than log(2).

Example 3. Very low growth.
Consider the map

ϕ+ : [x, y, z] −→ [yz + 4xz + 4xy, yz − 2xz + xy, yz + xz − 2xy]. (3.9)

Note that this map is very similar to the previous one. We get

1, 2, 4, 7, 12, 18, 25, 34, 44, 55, 68, ??? (3.10)

This is not only below the maximal growth, which would again be 2k , since the map is
quadratic, but is not even exponential.

Comparing to the previous example, it appears that the first four terms of the sequence
of degrees are identical, but additional drops appear at the level of the fifth iterate. The drop
of the degree is such that the growth is polynomial (quadratic), the entropy vanishes and ν

as defined above is 2. This map is indeed algebraically integrable: it possesses an algebraic
invariant, defining a linear pencil of elliptic curves, to which the orbits are confined.
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3.3. The importance of being singular

One may wonder about the origin of the drop of the degree. It is actually geometrically very
simple, and comes from the singularity structure [12, 16, 26].

We need to recall what is singularity for a map ϕ of projective space. A point
[x0, x1, . . . , xn] is singular if all the homogeneous coordinates of the image by ϕ vanish. The
set of these points is thus given by n + 1 homogeneous equations. This set has codimension
at least 2: it will be points in CP2, complex curves and points in CP3, and so on. One
important point is that, as soon as the map is nonlinear, there always are singular points. The
vanishing of all homogeneous coordinates means that there is no image point in CPn. The
mere vanishing of a few, but not all coordinates means that the image ‘goes to infinity’, but
this is harmless for us, contrary to what happens in affine space. This is what projective space
has been invented for: to cope with points at infinity, which are not to be forgotten when one
considers algebraic varieties and rational maps. Moreover, using complex projective space
simplifies a lot the counting of intersection points, by Bezout theorem.

The maps we consider are almost invertible. They are diffeomorphisms on a Zariski
open set, i.e. they are invertible everywhere except on an algebraic variety, which we may
find as follows: suppose the map ϕ and its inverse ψ = ϕ−1 are written with homogeneous
coordinates. The composed maps ϕ · ψ and respectively ψ · ϕ are then just multiplication of
all coordinates by some polynomial κϕ and resp. κψ :

ψ · ϕ(m) = κϕ(m).id(m) and ϕ · ψ(m) = κψ(m).id(m). (3.11)

The map ϕ is clearly not invertible on the image of the variety of equation κϕ(m) = 0.
What may happen is that further action of ϕ on these points leads to images in the singular

set of ϕ. This means that κϕ(m) (or a piece of it if it is decomposable) has to factorize from
all the components. This is the origin of the drop of the degree! This is the link between
singularity (in the projective sense) and the degree sequence.

We may illustrate this with the example given by equation (3.7), when looking at the
iterates of ϕ on a generic point [x, y, z]. Here κϕ = xyz, and the factor dropping at the third
iterate is x. The situation is a little more intricate for the further iterates, but this is the essence
of the phenomenon.

At this point it is possible to understand what singularity confinement is: if for all
components of the variety κϕ(m) = 0 one encounters singular points of ϕ in such a way
that some finite order iterate of ϕ—once the common factors are trimmed—define non-
ambiguously a proper image in CPn, we have ‘singularity confinement’ (see section 2 and
references therein, as well as section 3.4.2).

3.4. How to calculate the entropy

3.4.1. Heuristic method. As was said above, it is hopeless to attempt a full calculation of the
iterates of a map, the size of the expressions to manipulate being too large in practice.

On may circumvent this difficulty by looking at the successive images of a generic
projective line, i.e. a degree 1 curve, with some running parameter (say t), and numerical
coefficients. The effect at the level of the calculation is to handle only univariate polynomials
(in t), drastically simplifying the computation. This is the most efficient way to produce the
first terms of the sequence of degrees, and it has been successfully used for map on spaces of
large dimension.

This also has a simple geometrical image: one is counting the intersection of the images
with a fixed generic hyperplane. This is exactly in the spirit of the notion of complexity
proposed by Arnold for diffeomorphisms [27].
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At this point it is necessary to recall that the image of a variety V by a (bi)-rational map
possibly contains two parts: the ‘proper image’ and some additional pieces, the ensemble
forming the ‘total image’. The image to consider in relation to Arnold’s definition is of course
the proper image. The total image actually contains, in addition to the proper image, the
blow-ups of possible singular points located on V .

Once one has listed the beginning of the sequence of degrees, it is necessary to evaluate
its growth. The heuristic way is to complete the list in a reasonable way.

One first try is to calculate the discrete derivatives of the sequence

d ′
n = dn+1 − dn, d ′′

n = d ′
n+1 − d ′

n, . . . (3.12)

and look for relations between the successive derivatives.
Looking again at the three examples given above, we see that for the Hénon map

(equation 3.6)

d ′
n = dn, dn = 2n. (3.13)

For sequence (3.8) we have

{d ′
n} = 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . . (3.14)

where we recognize (the beginning of) a Fibonacci sequence, which has exponential rate of
growth.

For sequence (3.10), we have

{d ′
n} = 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, . . . (3.15)

{d ′′
n } = 1, 1, 2, 1, 1, 2, 1, 1, 2, . . . . (3.16)

The second derivative is periodic, which indicates quadratic growth of the degree.
Another possibility is to write down the generating function of the sequence of degrees

g(s) =
∞∑

k=0

dks
k (3.17)

and try to fit it with a Pade approximant.
For Hénon (equation 3.6)

gHénon = 1

1 − 2s
. (3.18)

Remarkably this method works in many cases and the generating function we find is a
rational fraction with integer coefficients!

For the two other examples of section (3.2) we have respectively for ϕ− (equation 3.8)
and ϕ+ (equation (3.10)).

gϕ− = 1

(1 − s)(1 − s − s2)
(3.19)

gϕ+ = 1 + s2 + 2s4

(s2 + s + 1)(1 − s)3
. (3.20)

The growth of the sequence of degrees is given by the location of the pole of g which has
the smallest modulus. As soon as there is a zero of the denominator of g inside the unit circle,
the entropy does not vanish.

If, as is the case for gϕ+ , all poles have modulus 1, the multiplicity m of the root 1 (m = 3
for the case) gives the type of polynomial growth. It is of the degree ν = m − 1 (quadratic for
ν = 3).
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One could accumulate many examples of maps, and believe that the sequence of degrees
can always be fitted by a rational generating function, but the situation is more complicated
[28].

If the generating function g is a rational fraction with integer coefficients and constant
coefficient of the denominator equal to 1, then two propositions are true.

• The sequence of degrees verifies a finite recurrence relation with integer coefficients.
• The entropy is the logarithm of an algebraic integer.

The first part of this proposition is now proven for maps of CP2 (see the next paragraph
and [29–31]), and there are counterexamples in higher dimensions [28]. The second part is
still a conjecture for (bi)rational map of projective space of arbitrary dimension [15].

3.4.2. Use of the singularity structure. This is the approach taken in [29, 32, 33].
It is known that given a birational map ϕ : X → Y , it is possible to remove the singularities

and the non-invertibility by blowing up a number of sub-varieties of X and Y respectively.

ϕ̃

X̃ −→ Ỹ

πX ↓ ↓ πY .

X −→ Y

ϕ

The problem is that we want to iterate the map, i.e. we need to have X̃ = Ỹ . This leads us
in general to an infinite sequence of successive blow-ups. Fortunately, it is sometimes possible
to realize this regularization with a finite number of blow-ups. This is precisely what has been
called ‘discrete singularity confinement’ (see section 2 and reference therein). We have in this
case

ϕ̃

X̃ −→ X̃

� ↓ ↓ �.

P −→ P

ϕ

The projection � is a product of a finite number of blow-ups. The lifted map ϕ̃ is a
smooth map on a rational variety X̃.

The two-dimensional case is particularly interesting, because we can use intersection
theory of curves drawn on two-dimensional varieties. The Picard group of P2 has one
generator. Since the singular varieties always have codimension at least 2, we have to blow up
only points, and each blow-up adds one generator to the Picard group, with self-intersection
−1 (see for example [34, 35]).

There exists a (non-positive) scalar product on the Picard group Pic(X̃) of X̃. The map ϕ̃

induces an isometry �∗ on Pic(X̃). It is possible to represent the isometry �∗ with a matrix
μ(ϕ). It is then possible to read the number of intersections of the images of a generic line
under ϕ from the powers of μ(ϕ). This proves the existence of a finite recurrence relation on
the successive degrees: it is just the characteristic polynomial of μ(ϕ), and since the coefficient
of the leading term is 1, the entropy is the logarithm of an algebraic integer.

Moreover, since the metric is Lorentzian, we know that all (except at most two) of the
eigenvalues lie on the unit circle. Consequently, the entropy is the logarithm of a Salem
number (see section (3.6.2). It was also shown that, as soon as there are enough rational
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invariants of the map, the entropy vanishes [36, 37]. In the two-dimensional case, this leads
to ν = 1 or ν = 2 only. For higher dimensions, the polynomial growth may have ν > 2 [38].

Remark 1. We also have examples in higher dimensions, where it is possible to prove that
the sequence of degrees verifies a finite recurrence relation with integer coefficients [15, 39],
even if it is not a general property of the sequence of degrees.

3.5. Beyond maps

3.5.1. Non-autonomous maps. The notion of entropy may be applied to sequences of maps.
This is particularly important for non-autonomous iterations: suppose one has a family of maps
f (A) depending on set of parameters A = [α1, . . . , α2, αr ]. We may consider a sequence
{fn} of such maps with parameters An = [α1,n, α2,n, . . . , αr,n]. Rather than iterating a fixed
map f , construct the sequence F0 = f0, F1 = f1 · F0, . . . , Fn = fn · Fn−1. It is clear that the
definition of entropy is possible from the sequence of degrees of the Fn’s.

Here again the vanishing of the entropy detects integrability. The prototype of such
integrable non-autonomous maps is the set of discrete Painlevé equations (see section 2). For
all of these the entropy vanishes, and ν = 2 [26, 32, 40].

3.5.2. Lattice maps. The notion of entropy can be extended [41–43] to the so-called lattice
equations, which are to maps what partial differential equations are to ordinary differential
equations. For these systems, the characterization of integrability also started around 1990
(see [44–51]).

For simplicity we will consider the two-dimensional case, where the elementary plaquette
of the lattice is a square, but this applies straightforwardly to higher dimensions and other
lattices.

x1

x2

x

x12

The unknown variable y[m, n] is defined at all vertices of the lattice, and the equation is
a constraint of the form

f (x, x1, x2, x12) = 0 (3.21)

with x = y[m, n], x1 = y[m + 1, n], x2 = y[m, n + 1], x12 = y[m + 1, n + 1] for all vertices
[m, n].

In the simplest case, the above relation is multilinear, so as to determine any of the values at
a corner of the plaquette rationally in terms of the three others. It defines a (1+1)-dimensional
evolution.

The space of initial data is infinite dimensional. Initial data are given on a line which
must allow the determination of the values at all points of the lattice. The simplest possible
choice is to take a regular diagonal staircase going diagonally.
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We iterate the relation by calculating the values on diagonals moving away from the initial
staircase, and define a sequence6 of degrees dk .

The most straightforward definition is the same as the one of maps:

ε = lim
k→∞

1

k
log(dk). (3.22)

Proposition 2. The limit ε defined above exists, is independent of the coordinate system, and
if ε = 0 and the growth is polynomial, the degree of that polynomial is canonically defined.

The reason is the same as for maps (sub-additivity of the log(dk)). The difference comes
from the infinite dimensionality of the space of initial data. However, due to the structure of
the recurrence relation (causality) we need only 2q + 1 initial values if we want to calculate
q steps !

We may evaluate explicitly the degrees with the same trick as for maps: initial data are
given a fractional linear value in terms of some unknown t, all with the same denominator.

When the entropy vanishes, the growth of the degree is polynomial, and the degree of that
polynomial is a secondary characterization of the complexity.

The entropy for lattice maps is again a very good integrability detector[41–43, 52], and
enjoys similar properties, especially for what concerns the values it can assume (e.g. being the
log of an algebraic integer).

3.6. What values for the algebraic entropy?

3.6.1. Vanishing entropy. Of first importance is the value 0 for ε, as it signals the fall-off of
complexity which is one of the signatures of integrability [12, 16, 31]. Moreover when ε = 0
the secondary invariant ν classifies different polynomial growth rates.

If ν = 1, the system is believed to be linearizable [53, 54].
The ν = 2 case is particularly interesting: appears in two dimensions as soon as there is

an algebraic invariant and is related to automorphisms of rational elliptic surfaces.
Higher values of ν appear in dimensions larger than 2 [38].
It is probable that all values of ν can be attained at the price of increasing the dimension,

but explicit realizations remain to be found.

3.6.2. Non-vanishing entropy. The set of non-vanishing values taken by the entropy ε is also
of interest, because these values are not arbitrary. For two-dimensional maps for example, ε

is known to be the logarithm of a Salem number (see section 3.4.2). This is a quite strong
constraint: as such numbers are believed to be bounded below, this in turn implies that there
is a minimum for the entropy of two-dimensional maps.

It is natural to wonder what values ε can assume in general.

Definition: Let μ(n) be the infimum of exp(ε) over birational maps of Pn, ε being the
algebraic entropy.

Proposition 3.

• This infimum exists.
• μ(n + 1) � μ(n)

• μ(2) � sLehmer

• μ(k) < sLehmer , ∀k � 3

6 We may actually define a number of different entropies for lattice equations (see [42])).
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• limn→∞ μ(n) = 0

Here sLehmer denotes the root of

PL = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1 (3.23)

of modulus larger than 1. This number is approximately 1.17628. This is conjectured
(Lehmer’s conjecture) to be the smallest possible Salem number.

Proof. The first part of the proposition is trivial. The second part is elementary since it is
always possible, given a map over projective space of dimension n to add a dimension which
is just a spectator. The resulting map has the same entropy as the original one.

To prove the third part of the proposition, it is sufficient to produce a map with entropy
exactly log(sLehmer), see [30, 31]. Actually, if Lehmer’s conjecture is true we have the equality
μ(2) = sLehmer.

To prove the fourth part of the proposition, it sufficient to produce a map with entropy
lower than log(sLehmer). Take for example the monomial map (in dimension n = 3), given by

[x, y, z, t] −→ [xz, yt, yz, xy]. (3.24)

The characteristic polynomial of the matrix associated with the map is s3 − s2 + 1 and yields
exp(ε) 	 1.150 9639 which is strictly lower than μ(2). Note that the algebraic integer giving
the entropy is complex.

To prove the last part of the proposition, monomial maps are again useful. Their entropy
is given by the matrix of the exponents appearing in the map and is easy to evaluate. Consider
the map of Pn

� : [x0, x1, . . . , xn] −→ [
x1x0, x2, xn, x3xn, . . . , x0xn, x

2
n

]
(3.25)

which is essentially a permutation with a quadratic perturbation.
The entropy may be calculated from the characteristic polynomial of the matrix associated

with �. It is the maximal root of the polynomial

Qn = sn − sn−1 − 1. (3.26)

We find a sequence of entropies

εn 	 log(n)

n
. (3.27)

This ends the proof, and leads to the conjecture. �

Conjecture 1. One may conjecture that the sequence log(μ(n)) is a monotonically decreasing
sequence of strictly positive numbers, going to zero as n → ∞.

In other words, in a given dimension one cannot get arbitrarily close to integrability, as
measured with the algebraic entropy. The price to pay is to increase the dimension (i.e. the
order of the equation). This also means than any arbitrarily small nonintegrable perturbation of
an integrable systems takes it to a finite distance form integrability, if this distance is measured
with algebraic entropy.

4. Analytic and arithmetic approaches

4.1. Introduction

In this section we will explore an analogue of the Painlevé property for difference equations
that is complex analytic in nature. The Painlevé property for differential equations concerns
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the singularity structure of solutions in the complex domain. In order to extend these ideas to
the discrete world we consider difference equations, such as

F(z; y(z − 1), y(z), y(z + 1)) = 0, (4.1)

for some function F. Equation (4.1) is a functional relation that needs to be satisfied for all
z ∈ C. This is in contrast to the discrete setting in which one considers a solution of the
corresponding discrete equation,

F(n; yn−1, yn, yn+1) = 0, (4.2)

to be a sequence (yn), rather than a function y on C. Note that in this section, the fundamental
objects studied are solutions of equations of the form (4.1). We do not consider starting from
a sequence (yn) of equation (4.2) and extending it to a solution y(z) of equation (4.1), which
is a highly non-unique process.

The general solutions of difference equations contain arbitrary periodic functions. For
example, the general solution of

y(z + 1) − 5y(z) + 6y(z − 1) = 0

is

y(z) = 2zπ1(z) + 3zπ2(z),

where π1 and π2 are arbitrary period 1 functions. Clearly the general solution can have
arbitrarily bad singularities if we choose the periodic functions appropriately. On the other
hand, large classes of difference equations are known to admit many meromorphic solutions.
In particular, if R is a nonconstant rational function, then the first-order difference equation

w(z + 1) = R(w(z))

is known to admit the family of solutions

w(z) = W(z + π(z)),

where W is a particular nonconstant meromorphic function and π is an arbitrary period one
function [55–58]. This holds for integrable as well as nonintegrable equations.

In [53], Ablowitz et al suggested that a difference analogue of the Painlevé property is that
the equations should admit sufficiently many finite-order meromorphic solutions. Nevanlinna
theory provides a sophisticated theory of the value distribution of meromorphic functions.
Those meromorphic functions of finite order are particularly well behaved and provide a
natural class of ‘nice’ meromorphic functions.

We will outline how Nevanlinna theory can be used to obtain strong necessary conditions
for a difference equation to have admissible meromorphic solutions of finite order. Roughly
speaking, a meromorphic solution of a particular difference equation is called admissible
if it more complicated than all of the coefficients of the difference equation. The strong
necessary conditions mentioned above include precise forms for the coefficients of the
equation.

The remarkable formal similarity between Nevanlinna theory and Diophantine
approximation has been noted by several authors including Osgood and Vojta. This similarity
suggests that discrete equations with solutions in a number field k should be considered to
be of Painlevé type if the logarithmic height grows polynomially rather than exponentially.
In the case k = Q, the logarithmic height of the non-zero rational number x = a/b, with a
and b coprime, is h(x) = log max{|a|, |b|}. Preliminary classification results are described.
We will conclude with the work of Roberts and Vivaldi on discrete equations over finite
fields.

20



J. Phys. A: Math. Theor. 42 (2009) 454002 B Grammaticos et al

4.2. Basic terminology

Let f be a meromorphic function. The main idea of Nevanlinna theory is to encode important
information about f in the asymptotic behaviour of certain real-valued functions of a positive
variable r. These functions represent averages of certain functions of f over the disc |z| � r

or over the circle |z| = r . For more information on Nevanlinna theory, see [59].
The proximity function is

m(r, f ) = 1

2π

∫ 2π

0

log+ |f (reiθ )|dθ,

where log+ x := max(log x, 0). The enumerative function is

N(r, f ) :=
∫ r

0

n(t, f ) − n(0, f )

t
dt + n(0, f ) log r,

where n(r, f ) is the number of poles of f (counting multiplicities) in |z| � r . The Nevanlinna
characteristic function

T (r, f ) = m(r, f ) + N(r, f )

measures ‘the affinity’ of f for infinity. For a ∈ C,

T

(
r,

1

f − a

)
= m

(
r,

1

f − a

)
+ N

(
r,

1

f − a

)

measures the ‘affinity’ of f for the value a.
Nevanlinna’s First Main Theorem says that for any meromorphic function f and any

a ∈ C,

T

(
r,

1

f − a

)
= T (r, f ) + O(1), r → ∞.

This says that asymptotically (as r → ∞), the affinity of f for the value ∞ is the same as its
affinity for the value a.

Several important classes of meromorphic functions are characterized by the rate of
growth of T (r, f ). For example, f is a constant if and only if T (r, f ) is bounded and f is
rational if and only if T (r, f ) = O(log r). The order of a meromorphic function is defined to
be

ρ(f ) := lim sup
r−→∞

log T (r, f )

log r
.

The order is well defined for any meromorphic function but it may be infinite. Finite-order
meromorphic functions play a special role in the theory.

The Nevanlinna characteristic is a natural measure of the complexity of a meromorphic
function. We will denote by S(r, f ), any positive function of r � r0, for some r0, such that

S(r, f ) = o(T (r, f )),

for all r ∈ [r0,∞) \ E, where E is a set of finite logarithmic measure (i.e.
∫
E

dr < ∞). The
appearance of the so-called exceptional sets, such as E, is ubiquitous in Nevanlinna theory as
they arise naturally in a number of important technical lemmas. Furthermore, we denote by
S(f ) the set of all meromorphic functions g such that T (r, g) = S(r, f ).

Let R(z, f ) be a rational function of y with coefficients aμ that are meromorphic functions
of z. Let d = degf R(z, f ) be the degree of R as a rational function of f . Then an extremely
useful identity originally due to Valiron [60] and generalized by Mohon’ko [61] says that if
the characteristic function of the coefficients are small compared to the characteristic of f ,
more precisely in our case, if aμ ∈ S(f ), then

T (r, R(z, f )) = dT (r, f ) + S(r, f ). (4.3)
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An important estimate for meromorphic solutions of difference equations due to Yanagihara
[57] is that, given ε > 0,

T (r, f (z ± 1)) � (1 + ε)T (r + 1, f (z)) + O(1), (4.4)

for sufficiently large r.

4.3. Finite-order solutions

Consider the first-order difference equation

y(z + 1) = R(z, y(z)), (4.5)

where R is as described above. A meromorphic solution y of equation (4.5) is called admissible
if the coefficient functions aμ(z) in R satisfy aμ ∈ S(y). Note that if R(z, y) ≡ R(y) has
constant coefficients, then a meromorphic solution is admissible precisely if it is non-constant.
Similarly, if the coefficients aμ of R are all rational functions, then a meromorphic solution is
admissible precisely if it is non-rational.

Let y be an admissible solution of equation (4.5). Taking the Nevanlinna characteristic
of both sides of equation (4.5) and using the estimates (4.3) and (4.4) yields

(1 + ε)T (r + 1, y) � dT (r, y) + S(r, y). (4.6)

Ignoring the S(r, y) term in the inequality (4.6) implies that T (r, y) grows exponentially if
d > 1. Even though, by definition, the S(r, y) term has a possible small exceptional set
associated with it, this conclusion remains valid (see [62]). So the only difference equation
of the form (4.5) with a finite-order admissible meromorphic solution is the difference Riccati
equation

y(z + 1) = a1(z)y(z) + a2(z)

a3(z)y(z) + a4(z)
, (4.7)

where aj ∈ S for j ∈ 1, . . . , 4. The case in which R is rational in z and y was first studied by
Yanagihara [57]. It is well known that equation (4.7) can be linearized. This is reminiscent of
the fact that the only differential equation of the form y ′ = R(z, y) with the Painlevé property
is the (differential) Riccati equation.

It is clear that some sort of admissibility condition is required in the above, so
long as we only consider a single solution. Otherwise, we could construct equations of
essentially any form as follows. Let y be any finite-order meromorphic function and define
f (z) = y(z + 1) − y(z)7. Then by construction, there is a finite-order meromorphic solution
of the equation

y(z + 1) = y(z)7 + f (z). (4.8)

This is a very special solution of equation (4.8) and it is not admissible because, intuitively,
the complexity of f is approximately the same as the complexity of y.

There are several elementary inequalities involving the Nevanlinna characteristics of
combinations of meromorphic functions f, g, h, including

T (r, fg) � T (r, f ) + T (r, g), (4.9)

T (r, f + g),� T (r, f ) + T (r, g) + log 2. (4.10)

Also, Grammaticos et al [14] showed that

T (r, fg + gh + hf ) � T (r, f ) + T (r, g) + T (r, g) + log 3. (4.11)
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For higher order difference equations, these identities are useful in obtaining restrictions
on the degrees of functions that appear in equations with finite-order admissible solutions. For
example, if either of the equations

y(z + 1) + y(z − 1) = R(z, y(z)) or y(z + 1)y(z − 1) = R(z, y(z))

has a finite-order admissible meromorphic solution, then d := degyR(z, y) � 2. The proof
relies on the identities (4.9) and (4.10) [53]. Similarly Ramani et al [63] considered the
equation

(y(z + 1) + y(z))(y(z) + y(z − 1)) = P(z, y(z))

Q(z, y(z))
,

where P(z, y) and Q(z, y) are polynomials in y with no common factors. They showed that
degyP � 4 and degyQ � 2. These sorts of results are useful as a first step in classifying
equations; however, more subtle arguments are required to obtain precise information on the
forms of the coefficient functions.

The most complete classification result based on the existence of finite-order meromorphic
solutions obtained to date is the following [62].

Theorem 4.1. If the equation

y(z + 1) + y(z − 1) = R(z, y(z)), (4.12)

where R(z, y) is rational in y and meromorphic in z, has an admissible meromorphic solution
of finite order, then either y satisfies a difference Riccati equation

y(z + 1) = p(z + 1)y(z) + q(z)

y(z) + p(z)
, (4.13)

where p, q ∈ S(y), or equation (4.12) can be transformed by a linear change in y to one of
the following equations:

y(z + 1) + y(z) + y(z − 1) = π1z + π2

y(z)
+ κ1 (4.14)

y(z + 1) − y(z) + y(z − 1) = π1z + π2

y(z)
+ eiπzκ1 (4.15)

y(z + 1) + y(z − 1) = π1z + κ1

y(z)
+

π2

y(z)2
(4.16)

y(z + 1) + y(z − 1) = π1z + π3

y(z)
+ π2 (4.17)

y(z + 1) + y(z − 1) = (π1z + κ1)y(z) + π2

e−iπz − y(z)2
(4.18)

y(z + 1) + y(z − 1) = (π1z + κ1)y(z) + π2

1 − y(z)2
(4.19)

y(z + 1)y(z) + y(z)y(z − 1) = p (4.20)

y(z + 1) + y(z − 1) = py(z) + q (4.21)

where πk, κk ∈ S(y) are arbitrary finite-order periodic functions with period k.

The following partial classification result was obtained for the product case in [64].
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Theorem 4.2. Let y be an admissible finite-order meromorphic solution of the equation

y(z + 1)y(z − 1) = c2(y(z) − c+)(y(z) − c−)

(y(z) − a+)(y(z) − a−)
=: R(z, y(z)), (4.22)

where the coefficients are meromorphic functions, c2 �≡ 0 and degy(R) = 2. If the order of
the poles of y is bounded, then either y satisfies a difference Riccati equation

y(z + 1) = py(z) + q

y(z) + s
(4.23)

where p, q, s ∈ S(y), or equation (4.22) can be transformed by a bilinear change in y to one
of the equations

y(z + 1)y(z − 1) = γ y(z)2 + δλzy(z) + γμλ2z

(y(z) − 1)(y(z) − γ )
(4.24)

y(z + 1)y(z − 1) = y(z)2 + δeiπz/2λzy(z) + μλ2z

y(z)2 − 1
(4.25)

where λ ∈ C, and δ, μ, γ ∈ S(y) are arbitrary finite-order periodic functions such that δ and
γ have period 2 and μ has period 1.

The proofs of theorems 4.1 and 4.2 have two main parts. The first uses Nevanlinna
theory to show that admissible solutions have many poles and that the behaviour of T (r, y)

is dominated by N(r, y). The main new tool here is the following difference analogue of the
lemma on the logarithmic derivative.

Theorem 4.3 ([65, 66]). Let f (z) be a meromorphic function of finite order and let c ∈ C.
Then

m

(
r,

f (z + c)

f (z)

)
= S(r, f ).

This theorem is the main source of the possible exceptional sets that have already been
mentioned. A similar result to theorem 3 was obtained independently by Chiang and Feng
[67]. Their result does not contain an exceptional set; however, it does not give a direct

comparison between m
(
r,

f (z+c)

f (z)

)
and T (r, f ). We need such a comparison for our purposes.

The second main part of the proofs of theorems 4.1 and 4.2 is a counting argument,
showing that for every point in a disc of radius r at which y takes one of the special values
for which the right-hand side of the equation becomes infinite, then one can find sufficiently
many poles of y (counting multiplicities) in the disc of radius r + 1, unless the equation is one
of the special cases listed in the theorem. This part of the argument has many similarities with
the standard singularity (non-)confinement calculations (see [62]).

Recently it has been shown in [68] that the conclusions of theorems 4.1, 4.2 and 4.3 hold
if we replace the assumption that y is of finite order by the weaker assumption that

lim sup
r→∞

log+ log+ T (r, y)

log r
< 1.

This is equivalent to saying that y has hyper-order strictly less than one. This assumption
perhaps looks closer in spirit to the zero algebraic entropy condition.
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4.4. Vojta’s dictionary and Diophantine integrability

Mathematicians since the late 19th century have commented on the strong formal similarity
between number theory and complex function theory. Kronecker [69] points out that it is
useful to think of the numbers in a number field k as functions of the prime ideals of the ring
of integers Ok . Just over a century later, Osgood [70] and Vojta [71] independently drew
attention to the remarkable formal similarity between Nevanlinna theory and Diophantine
approximation. Vojta went so far as to produce a ‘dictionary’ relating, or translating, key
ideas, definitions and theorems between the two fields.

Vojta’s dictionary is just a heuristic but it is a very powerful source of precise conjectures.
For example, a meromorphic function f in Nevanlinna theory corresponds to an infinite
subset of a number field k in Diophantine approximation. The Nevanlinna characteristic
T (r, f ) corresponds to the logarithmic height h(x) = log H(x) of some x ∈ k. If k = Q, then
the height of any nonzero x ∈ Q is H(x) = max{|a|, |b|}, where a and b are coprime integers
such that x = a/b. A weak version of Nevanlina’s second main theorem corresponds to the
well-known approximation theorem of Roth. Let us apply Vojta’s dictionary to the idea that
a difference equation of ‘Painlevé type’ in Nevanlinna theory is one with many finite-order
meromorphic solutions. A related infinite list of numbers in a number field can obviously
be generated by moving back to the corresponding discrete equation with coefficients and
initial conditions in the number field. Demanding that the meromorphic solution be of finite-
order corresponds to demanding that the logarithmic height of the solution of the discrete
equation does not grow exponentially. Such discrete equations are referred to in [72] as being
Diophantine integrable.

Slow height growth over the rationals has been used by several authors as a detector of
integrability and as a tool for numerically calculating entropies. Abarenkova et al [73] used
slow height to determine values of a parameter for which a family of maps is integrable.
Height growth and integrability have also been explored in [74–77].

Numerically testing for slow height growth is perhaps the quickest and simplest of the
standard tests, provided the equation has fixed parameters in a number field (e.g. Q). As an
example we consider the so-called q-PVI equation, which is the system

fnfn+1

cd
= gn+1 − αqn+1

gn+1 − γ

gn+1 − βqn+1

gn+1 − δ
,

(4.26)
gngn+1

γ δ
= fn − aqn

fn − c

fn − bqn

fn − d
,

subject to the constraint q = abγ δ/αβcd. The system (4.26) was discovered by Jimbo
and Sakai as the compatibility condition for an isomonodromy problem [78] and is an
integrable discretization of the sixth Painlevé equation (PVI). Figure 1 is a plot of
log log max{H(fn),H(gn)} against log n for iterates of equation (4.26) with the initial
conditions f0 = 2/3, g0 = 3/4 and the choice of parameters (α, β, γ, δ, a, b, c, d) =
(15/7, 4/3, 1/2, 1, 8/7, 5/7, 2, 1/7). The two graphs represent two different choices for q,
namely, q = 1/2 (=abγ δ/αβcd, i.e., the integrable case corresponding to the asymptotically
linear graph) and q = 2. From the graph we see that the logarithmic heights h(fn) and h(gn)

appear to grow polynomially in the integrable case and exponentially in the nonintegrable
case.

4.5. Height growth and the discrete Painlevé equations

In this section we describe in outline some methods for proving a number of estimates about
height growth. Many of the techniques used to obtain necessary conditions for a difference
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Figure 1. Plot of log log max{H(fn), H(gn)} versus log n for equation (4.26).

equation to have a finite-order meromorphic solution also appear to have Diophantine
analogues. For example, the identities (4.9)–(4.11) correspond to

h(xy) � h(x) + h(y);
h(x + y) � h(x) + h(y) + log 2;
h(yz + zx + xy) � h(x) + h(y) + h(z) + log 3.

There is also a simple analogue of the Valiron–Mohon’ko estimate (see [72]). In order to obtain
more precise information on the coefficient functions appearing in equations with solutions
having slow height growth, we consider an analogue of singularity confinement.

The logarithmic height on a number field can be expressed as a certain sum over the places
(equivalence classes of absolute values) of the number field. In the simplest case k = Q, the
only nontrivial absolute values are the the p-adic absolute values | · |p and usual absolute value,
| · |∞, which is often referred to as the absolute value associated with the ‘prime at infinity’.
The p-adic value of the nonzero rational number x is |x|p = p−r , where r is defined to be
the unique integer such that x = pra/b, where p divides neither a nor b. In terms of these
absolute values we have for any nonzero x ∈ Q,

h(x) =
∑
p�∞

log+ |x|p,

where the sum is over all primes (finite and infinite). An analogue of singularity confinement
can be described in terms of absolute values.

Let us consider the equation

yn+1 + yn−1 = αn + βnyn

y2
n

, (4.27)
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where αn �= 0 and βn are rational functions of n with coefficients in Q. If αn = A and
βn = Bn + C, where A,B and C are constants, then equation (4.27) is a known discrete
Painlevé equation with a continuum limit to the first Painlevé equation. If αn and βn are both
constants then equation (4.27) can be solved in terms of the Weierstrass elliptic function.

For the rest of this section, we assume that at least one of the functions αn+2 − αn and
βn+2 − 2βn+1 + βn is not identically zero. With respect to a particular absolute value on Q we
can define a scale, εn, against which we can compare the size of the iterate yn. Since αn+2 −αn

is a rational function of n, then either it is identically zero or there is an integer n0 such that
αn+2 − αn �= 0 for all n > n0. The same is true for the rational function βn+2 − 2βn+1 + βn.

Let κp = 1 for all primes p < ∞ and κ∞ = 3. For sufficiently small δ > 0, we define
εn > 0 as follows.

(i) If |αn+2 − αn| �= 0 then

ε−δ
n = κp max{1, |αn|−1, |αn|, |βn|, |αn+1|, |αn−1|, |βn−1|, |βn+1|,

2|αn−2
−1|, |αn−2|, |βn−2|, |αn − αn−2|, |αn − αn−2|−1}, (4.28)

(ii) If |αn+2 − αn| ≡ 0 and |βn+2 − 2βn+1 + βn| �= 0 then

ε−δ
n = κp max{1, |αn|, |αn

−1|, |βn|, |αn+1|, |αn−1|, |βn+1|,
|βn − 2βn−1 + βn−2|−1}. (4.29)

The following estimates (see [79]) represent a version of the singularity (non-) confinement
calculation interpreted in terms of a particular absolute value on Q.

Theorem 4.4. Let (yn)
k+3
n=k−1 ⊆ Q/{0} with k − 1 � r0 satisfy equation (4.27) where

αn �≡ 0, αn, βn ∈ Q(n) and at least one of the functions αn+2 − αn or βn+2 − 2βn+1 + βn is not
identically zero. If |yk−1| � |yk|−1/2 and, for sufficiently small δ > 0, |yk| < εk then

(i) yk+1 = αk

y2
k

+ βk

yk
+ Ak, where |Ak| � |yk|−1/2.

(ii) yk+2 = −yk + βk+1

αk
y2

k + Bk, where |Bk| � |yk|3−4δ

(iii) yk+3 = αk+2−αk

y2
k+2

+
βk+2−2 αk+2

αk
βk+1+βk

yk+2
+ Ck ,

where |Ck| � max
{| αk+2−αk

αk
||yk+2|−(1−δ), |yk+2|−1/2

}
for non-Archimedean absolute

values and |Ck| � 2| αk+2−αk

αk
||yk+2|−(1−δ) + 3|yk|−1/2 for Archimedean absolute values.

In [79], this theorem is used to prove that if equation (4.27) has an admissible solution
with polynomial height growth, then αn = A and βn = Bn + C, where A,B and C are
constants, corresponding to the discrete Painlevé equation mentioned above. This supports
the idea that slow height growth leads to discrete integrable equations.

4.6. Finite fields

So far we have considered discrete equations over R, C and Q. We conclude this paper with a
brief description of the work of Roberts and Vivaldi and Jogia [80, 81] on rational symplectic
maps over finite fields and the use of statistics concerning the lengths of orbits as a detector of
integrability. The main theoretical idea underlying this analysis is the celebrated Hasse–Weil
bound, which provides a sharp estimate for the number of points on a given algebraic curve
over a finite field.

For any prime number p, let Fp denote the field of integers modulo p. Let C(Fp) be an
irreducible algebraic curve over Fp of genus g. Then the number �C(Fp) of points on this
curve is constrained by the Hasse–Weil bound

p + 1 − 2g
√

p � �C(Fp) � p + 1 + 2g
√

p.
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Now consider a rational map f : F2
p → F2

p. Since the phase space is finite, all orbits of f are
periodic. If f has a polynomial first integral, I (x, y), then all points on a particular orbit must
lie on a curve C of the form I (x, y) = α, for some α ∈ Fp. Hence, the Hasse–Weil bound
provides a necessary condition for the existence of such a first integral that is irreducible and
of genus g.

For any rational map on R2 or C2 of infinite order possessing a rational integral, the
genus of each level set is 0 or 1 [82]. Generically the genus is 1 unless the curve possesses
singularities. In [80, 81], the authors considered rational maps with coefficients in Q. They
considered reductions of these maps modulo various primes p and looked at the lengths of
orbits (either the maximum orbit length, or the average orbit length for each p). By exploring
different values of parameters, they found that the orbit lengths compared to the Hasse–Weil
(upper) bound clearly indicate the values of the parameters for which the map is integrable.
When the integrable case corresponds to a non-integer rational value of the parameter, a sieve
method can be used to deduce the value by exploring a number of choices of the prime p.
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